Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            "Can A Language Model Represent Math Strategies?": Learning Math Strategies from Big Data using BERTFree, publicly-accessible full text available March 3, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Feng, Mingyu; Käser, Tanja; Talukdar, Partha (Ed.)Recent research seeks to develop more comprehensive learner models for adaptive learning software. For example, models of reading comprehension built using data from students’ use of adaptive instructional software for mathematics have recently been developed. These models aim to deliver experiences that consider factors related to learning beyond performance in the target domain for instruction. We investigate the extent to which generalization is possible for a recently developed predictive model that seeks to infer students’ reading comprehension ability (as measured by end-of-year standardized test scores) using an introductory learning experience in Carnegie Learning’s MATHia intelligent tutoring system for mathematics. Building on a model learned on data from middle school students in a single school district in a mid-western U.S. state, using that state’s end-of-year English Language Arts (ELA) standardized test score as an outcome, we consider data from a school district in a south-eastern U.S. state as well as that state’s end-of-year ELA standardized test outcome. Generalization is explored by considering prediction performance when training and testing models on data from each of the individual school districts (and for their respective state’s test outcomes) as well as pooling data from both districts together. We conclude with discussion of investigations of some algorithmic fairness characteristics of the learned models. The results suggest that a model trained on data from the smaller of the two school districts considered may achieve greater fairness in its predictions over models trained on data from the other district or both districts, despite broad, overall similarities in some demographic characteristics of the two school districts. This raises interesting questions for future research on generalizing these kinds of models as well as on ensuring algorithmic fairness of resulting models for use in real-world adaptive systems for learning.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available